WFIRST AFTA Telescope Temperature Impacts Christopher Hirata SDT Telecon September 26, 2014 #### Background - Previous baseline telescope temperature (05/2013 report) was 270 K. - This was based on preliminary assessments 2 years ago. - We have been asked to study the science impact of operations within the currently qualified range of temperatures for the fore optics - This means 277 K + 5 K (margin) = 282 K - There is a sensitivity impact from increased thermal emission (3.2x in F184) from the primary and secondary mirrors at higher temperature. - Previous assessment (01/2014) showed the greatest impact on the high latitude survey, less on supernovae and microlensing. - The coronagraph is a visible instrument and is not sensitive at wavelengths where the thermal emission is relevant. # Current Assumptions for Wide Field Channel - 2.5% emissivity per surface for PM and SM - Current throughput model has 1.7% loss at 2 μ m; the difference is allowances of various sorts. - +2 K margin added to telescope temperature to account for miscellaneous effects (non uniform temperature, non-step function red cutoff). - Out-of-band rejection 10^{-4} (requires attention for 2.5 μ m cutoff detectors) - Spider and central obstruction at PM/SM temperature if not blocked by exit pupil mask. - Read noise 20 e per CDS, 5 e floor. - More details available in the write-up. - This was for the wide field channel the IFU / SN program impact is being reviewed. #### **HLS** - Spectroscopy - Assessment based on 2013 SDT report H α LF model. - "Reference" case is at 270 K, 1.35—1.95 μm bandpass (1.06<z_{H α}<1.97), 200 nm rms wave front error. - Also ran cases at 282 K: - "282" → Just changed telescope temperature - "282B" → Reduce bandpass, $z_{H\alpha}$ max = 1.88. - "282BI" and "282BW" → explored changes to the wavefront error (150 or 240 nm rms) [useful to compare the telescope temperature to the impact of other parameters.] #### HLS Spectroscopy Impacts (H α) #### HLS - Imaging - Largest impact expected in reddest filter (F184). - Under reference conditions (3 min HLS exposure, 1.3x zodi at pole): - Expect 48 e/pix of zodi - Thermal emission is 213 e/pix at 282 K (67 e/pix @ 270 K) - Read noise variance is 100 e²/pix. - Thermal emission contribution rises from 33% of total noise budget in an RSS sense (270 K) to 61% (282 K). - Corresponds to 0.30 mag loss of depth. - Impact is smaller in the bluer filters. - Cycle 5 will implement an exit pupil mask in H-band. ## HLS – Imaging Depths | | Depth (270 K)
Mag AB 5σ pt src | Depth (282 K)
Mag AB 5σ pt src | PSF ½ light radius arcsec | |------|-----------------------------------|-----------------------------------|---------------------------| | Υ | 26.70 | 26.67 | 0.118 | | J | 26.84 | 26.81 | 0.125 | | Н | 26.71 | 26.63 | 0.134 | | F184 | 26.13 | 25.83 | 0.143 | ### Imaging Depths for longer exposures | Lim. mag. | F184 | | Н | | J | | |-----------|-------|------------------|-------|------------------|-------|-------| | | 270 K | $282~\mathrm{K}$ | 270 K | $282~\mathrm{K}$ | 270 K | 282 K | | 26.4 | 1243 | 2118 | 678 | 734 | 745 | 745 | | 26.5 | 1412 | 2514 | 734 | 819 | 813 | 813 | | 26.6 | 1610 | 2966 | 819 | 875 | 881 | 915 | | 26.7 | 1864 | 3531 | 904 | 988 | 983 | 983 | | 26.8 | 2147 | 4209 | 1017 | 1101 | 1050 | 1084 | | 26.9 | 2514 | 5028 | 1130 | 1214 | 1186 | 1220 | | 27.0 | 2938 | 6017 | 1271 | 1356 | 1288 | 1356 | | 27.1 | 3474 | 7203 | 1412 | 1553 | 1457 | 1491 | | 27.2 | 4096 | 8644 | 1610 | 1779 | 1627 | 1695 | | 27.3 | 4859 | 10367 | 1864 | 2034 | 1830 | 1898 | | 27.4 | 5763 | 12430 | 2147 | 2344 | 2067 | 2169 | | 27.5 | 6893 | 14916 | 2486 | 2712 | 2373 | 2508 | | 27.6 | 8220 | 17910 | 2909 | 3192 | 2745 | 2915 | | 27.7 | 9831 | 21526 | 3418 | 3757 | 3186 | 3390 | | 27.8 | 11780 | 25848 | 4039 | 4407 | 3695 | 3966 | | 27.9 | 14096 | 31046 | 4774 | 5226 | 4339 | 4644 | | 28.0 | 16921 | 37318 | 5678 | 6215 | 5085 | 5491 | Total live time in seconds for HLS dithering strategy to reach 5σ pt src depth (AB mag). Exposure time penalty at AB 28 is 2.2x (F184) or 1.1x (H). Alternatively the long exposure in F184 is 0.43 mag shallower. #### Microlensing (Analysis by Matthew Penny) - Median zodi is 3.3 e/p/s dominant over thermal emission even at 282 K since we look in the ecliptic plane. - The brightness of the stars in the bulge exceeds zodi in the vast majority of pixels. - Increased RMS noise due to 282 K operation is estimated at 2.6% in median pixel (5.0% in 10th percentile faint pixel)